Ive been doing the aluminization process for telescope mirrors at the NCA ATM workshop with a 55-year-old military surplus aluminizer at a DC rec center for about 20 years. (I’ve had a lot of help!!) This involves high vacuum, a noisy pump, voltage both very high and very low, and quite a lot of time.

Today, I had the opportunity to silver a random piece of glass, in my driveway, with the aid of another longtime ATMer and some chemicals from Angel Gilding. I had seen this demonstrated at Stellafane by Howard Banich and Peter Pekurar in 2019.

Doing it myself was quite eye-opening.

Almost finished, except for the spray-on Angel-Guard, which we didn’t have

Here’s what I wrote on FB:

Success with our first attempt at silvering a piece of glass under a tent canopy, and then stripping off the silver quickly and easily with PCB etchant (FeCl?).

I’ve aluminized many mirrors with the NCA’s vacuum chamber, using a modified version of John Strong’s method from the 1930s.

I must admit that this method was faster, easier, quieter, and much more low-tech, compared to depositing aluminum. In the latter case, sometimes you have to wait an hour or more for the dual-stage vacuum chamber (the primary pump is VERY noisy!!) to finish all the preparatory steps and pump down low enough that a hot atom of gaseous aluminum can travel two or three feet before striking any other remaining air molecule! (That is one hell of a vacuum!)

With the silvering process, you can do any size mirror you can fit on your cleaning jig — and you can make it out of pieces of scrap wood, a few nylon chair legs, two old hinges, and some screws! !

With our NCA-ATM-CCCC aluminizer, we are limited to 12.5” max. I’m currently working on a 16.5” thin Pyrex mirror; the price I’m quoted for aluminizing it is about $600 at Majestic Coatings, which is about three times what I paid for the blank!! And that doesn’t even include shipping!

Today Alan T and I tested the silvering process in my driveway using the screen tent canopy that we use at the ATM workshop to stop dust particles from landing on mirrors that are being polished. (After getting permission to go retrieve the canopy from the Covid-closed rec center, we immediately went into the parking lot to hose off a decade of dust!!)

We unfortunately do not have Angel-Guard overcoating on hand. It should arrive Wednesday. As most folks know, bare silver, unlike bare aluminum, tarnishes very quickly (in weeks or months) when exposed to ordinary air, whereas a I have seen many bare Aluminum layers last a decade. This overcoating is said to extend the life of the coating to about a year, but obviously conditions will vary.

We used a 6″ float glass mirror blank to try out the process today – not an actual, parabolized mirror.

How does it work?

This is basically a five step process:

1. Get prepared and mix the tinning solution afresh;

2. Clean off the mirror properly with precipitated CaCO3 and/or Alconox; rinse;

3. Sensitize the mirror with an invisible layer of tin (Sn); rinse;

4. Spray on the silver solution and its reducer at the exact same time with two separate brand-new one-pint hand squirt bottles, until fully silvered & shiny; rinse;

5. Spray on the Angel-Guard overcoat; rinse; dry.

The amount of chemicals used is minimal. The nastiest stuff was the reducer. I’m glad we did this outside.

Btw: a number of people have bench-tested mirrors before and after this process. Some report no change in figure; somebody I trust, who has a Zygo interferometer, says there is a little degradation, but not much: a mirror that was 1/10 lambda (excellent) might go to 1/4 lambda, which is certainly usable for a big Dob, iirc.

And it’s cheap! And fast! And easy! And quiet!

We were able to fully and completely strip the brand new silver off with the PCB etchant in under 3 minutes. Aluminum takes much longer.

Thanks to: Léon Foucault; Steinheil; Howard Banich; Peter Pekurar; Angel Gilding; Alan Tarica; and my wife, Gail.

One spray for the silver solution, one spray for its reducer (chemistry)
It’s the tent canopy that’s bent, I think. But this is not a telescope mirror; just a 6 inch disk of float glass.
That’s Alan
I made the jig to hold the mirrors out of some scrap two-by-fours, some screws and reinforcement plates; two old hinges; some nylon chair feet; some 1/2″ PVC pipe; and some 1/2″ PVC end caps.
The tent-screen canopy needed staking and tying down to prevent it flying off. Putting up the frame took three people (me, Alan, and my wife, Gail).