• My series on making a Newtonian telescope
  • How Leon Foucault Made Telescopes

Guy's Math & Astro Blog

Guy's Math & Astro Blog

Monthly Archives: December 2021

Progress and Problems with an OnStep Conversion of a High-Quality 1970’s Telescope Drive

31 Friday Dec 2021

Posted by gfbrandenburg in astronomy, Hopewell Observatorry, Optics, Telescope Making, Uncategorized

≈ 2 Comments

Tags

Arduino, Astrophotography, ATM, Hopewell Observatory, OnStep, Stepper Motors, Telescope

I have made a lot of progress over this winter break in converting the 50-year-old Ealing telescope mount at the Hopewell Observatory, as you can see in this video.

We are swapping out an electro-mechanical “dumb” drive that failed, in favor of a modern, solid-state one built in the Arduino environment. If it all works out as planned, this mount will be able to slew to any target and keep the target steady enough for astrophotograpy. I hope.

With a project like this, with delicate electronics that can easily get fried, I believe that having spare parts on hand is a good idea. The main board is pretty cheap: under $100, completely assembled, and the motors were about $30 each. We have spare stepper motors, spare stepper drivers, and a total of three main MaxESP OnStep boards.

Except that two of them (the ones we purchased from George C) don’t work at all, and I don’t know why. The one that Ken Hunter built and **donated** to us works just fine, after I did the required tweaking of various settings inside the Smart Hand Controller or SHC and inside a CONFIG.H file in the Arduino programming environment. And added the gears and belt.

I see almost no serious differences between George’s boards and Ken’s board. I am confident the problem is not my wiring or soldering, and it’s not the fact that George’s boards have RJ45 jacks, but what it is, I have no idea.

This is my second build of the connections between the stepper motor and the worm gear.

Without the help of Ken H, Howard Dutton, another Ken, Alan Tarica, Prasad Agrahar, and Khaled Bahayeldin, I never would have gotten this far. I am very appreciative of the amount of work that went into programming all of the many parts of the OnStep project as a whole. However, I found the OnStep Wiki rather confusing for beginners, and I hope to help them make it clearer in the future.

You can probably see that there is a good bit of wobble in the gears that involve the belts. That is probably because I failed to get the gears perfectly flush against the lathe chuck when I was enlarging their central holes from 5 mm to 1/4 inch despite using a dial indicator with a magnetic base to center it. I think I will need to order a new set of gears that have a 1/4″ axle hole already made at the factory. I don’t think I can do any better than I did, and that wasn’t good enough.

The reason for having the gears and belts is something to do with microstepping on the stepper motors that I really don’t understand. OnStep experts told me that the OnStep board, drivers, and steppers simply cannot handle gears that are 1 : 20 : 359. So we added a 3:1 toothed-gear-and-belt system so that the ratios are now 3 : 1 : 20 : 359. That set of ratios seems to make the steppers happy. (These motors have 200 steps per rotation, and are being currently driven at a rate of 1/16 of a step.) They don’t scream and stall any more, but the wobbly gears will probably translate into periodic error that one can see in the eyepiece or on long exposures with some kind of camera.

My next step is to take this entire apparatus up to the Hopewell Observatory itself and see what happens when I install them in the Right Ascension and Declination drives.

Then, we need to repair the electrical supply for the roll-off roof.

Then we have to put the telescopes back onto the mount.

Then, and only then, can we try having a “First Light” with the new motor pushing a very nice Ed Byers drive in an big, old, and very well-built university-grade telescope mount.

Actual Progress with OnStep

21 Tuesday Dec 2021

Posted by gfbrandenburg in astronomy, Hopewell Observatorry, Telescope Making

≈ 1 Comment

Tags

ealing, Hopewell Observatory, Mount, OnStep, stepper motor, Telescope

I think I have succeeded in getting our OnStep build to work properly. Previously, whenever I asked the drive to slew to an new location, the stepper motors would build up to a certain speed and then stop rotating while they screamed, seemingly in protest. It’s called stalling.

With the help of several of the principal leaders in the OnStep project (Howard Dutton, Ken Hunter, Khalid Bahayeldin) and Alan Tarica and Prasad Agrahar, I think I may have finally got the settings set properly. The final secret was to reduce the slewing speed in the smart hand controller to the lowest setting.

This does make slewing rather slow, however. To go from the location of Jupiter to Capella tonight, which is a pretty long distance across the sky, took nearly eight minutes. Watch the video.

It’s Not Rust! It’s Just Grease!

19 Sunday Dec 2021

Posted by gfbrandenburg in astronomy, Hopewell Observatorry, Optics, Telescope Making, Uncategorized

≈ Leave a comment

Tags

Byers, Ealiing, Hopewell Observatory, OnStep

Here is a photo of the inside of the declination axis of the Ealing mount at Hopewell Observatory.

The gears you see were made about 50 years ago by the Ed Byers company, who continue to produce some of the finest gears anywhere. The periodic error on this mount is very, very low, which is a Good Thing, and why we want to keep it and just upgrade the old drive. As you can see in a previous post, the old system had a finicky clutch drive that had caused a lot of problems, but worked very well indeed when it worked properly.

I am working to replace it with a more modern, reliable and user-friendly, namely an OnStep ‘build’.

The friendly and helpful folks at the OnStep project were asking for a picture showing how the existing Byers drive was put together. I hope these four photos help.

In the first photo, notice the greasy worm gear at the bottom left. It was removed from the mount, along with the old motors, and is sitting on my desk (with the old grease cleaned off), directly coupled to the stepper motor, which connects to one of the OnStep boards (in the wood-and-black aluminum box). In the second photo,

The black anodized bracket in the second photo holds the motor and the worm gear rigidly together. The bracket bolts into a place in the mount (not shown). It took a bit of work to get the stepper motor and the worm gear lined up within a couple of thousandths of an inch, but it’s done. Prasad turned me onto those cool little universal joints that permit one to connect items that don’t match perfectly.

20 turns of the worm gear, times 359 teeth on the big gear, means that it takes 7,180 turns of the stepper motor to make one full revolution of this declination axis or of the right ascension axis, which is identically mounted. (Not that you would want to go about spinning your telescope very far on either axis!)

So 19.97 turns of either motor make the scope travel 1 degree (7180 divided by 360).

And since our stepper motors make 200 steps in one revolution of the worm gear, it takes about 3994 motor steps to make the scope turn by that one degree (the last result, times 200).

Or if you are micro-stepping by, say, the rate of one sixteenth of a step, then by my calculations it will take 63,911 microsteps to turn by that degree (the last result, times 16). And that seems to be outside the range of permissible microsteps for these stepper motors, perhaps causing them to scream in protest. (I swear, that’s what it sounds like!)

From left to right: A spare OnStep board inside its wood-and-aluminum project box; the NEMA23 stepper motor on its bracket; a universal joint; a big bearing; the first worm gear (now cleaned off)

It appears that Khaled and Prasad might be correct: I might need to add a toothed gears and a belt to this arrangement to reduce that last number (63,911) by some factor. For very little money I just ordered a pair of such things, designed for 3-D printers and other computer-controlled machines. It will have 60 teeth on the motor and 20 teeth on the worm gear, and then the above would instead have only 21,304 microsteps to turn one degree. (No wonder they protest!) Once again I’ll have to disassemble the motor and drive bracket and do a bit of machining. A drill press and a punch will be fine.

The last two photos give some more detail on how the old drive system worked.

Close up of worm gear driving a toothed gear wheel that drives another worm gear that drives the right ascension axis
One of the original drive motor and clutch assemblies in place, inside the mount. All those gears have now been removed.

Mysterious Noises from Stepper Motors for the Ealing Telescope Mount

18 Saturday Dec 2021

Posted by gfbrandenburg in astronomy, Hopewell Observatorry, Telescope Making

≈ 3 Comments

Tags

Alan Tarica, Ealing mount, George Cushing, Hopewell Observatory, Howard Dutton, Ken Hunter, Khalid Bahayeldin, OnStep, Prasad Agrahar, stepper motor, Telescope Making, Telescope Modification

A few blog entries ago, I thought I had made great progress in getting the old telescope drives for Hopewell Observatory’s venerable Ealing Mount to work again. Unfortunately, it became clear that one had to adjust the amount of friction in the clutches very, very accurately, and I saw no way to fine tune it.

So I bit the bullet and decided to convert the mount over to an inexpensive system, at least partly DIY, that uses very inexpensive solid-state printed circuit boards and Android phones to control stepper motors that make the telescope point in the directions desired. (Instead of spending many thousands on a Sidereal Technologies rebuild.)

This system is called OnStep and is spearheaded by a number of very generous volunteers: Howard Dutton, who basically invented the system and wrote all the original code, along with Ken Hunter, George Cushing, and Khaled Bahayeldin, and a number of others whose names I don’t recall. It uses off-the-shelf components, chips and sub-boards, that cost very, very little; these are put on one of a slew of different possible 3D-printed circuit boards. There is even a Wiki that could use a bit of editing. It’s got a ton of information but when I was starting out, I found it extremely confusing, and I am not alone. I promised to try to improve it when I get the Ealing telescope working properly.

After getting the software to work, then you arrange the connections to your telescope’s gears, power supply, and communications inside your own mount.

I am immeasurably aided in this conversion effort by Alan Tarica, who is the co-leader of the Washington, DC-area’s Telescope Making, Maintenance, and Modification Workshop (which has been going on for about 80 years) and by Prasad Agrahar, who made a remarkable telescope in our TMMMW several years ago and went on to build his own OnStep conversion of an existing commercial telescope. Prasad’s example showed me that if our old Ealing drive died, we should try OnStep.

Well, the Ealing drive did finally die. (It had presented problems ever since it was first delivered to the University of Maryland Observatory nearly 50 years ago.)

Michael Chesnes and Bill Rohrer of Hopewell helped materially with removing the old components of the scope and with then trying to debug the electrical problem that has now sprang up with our roll-off roof.

Ken Hunter made for us, and debugged, an entire OnStep board and refused to take any money for it. Prasad Agrahar gave us some NEMA17 stepper motors and some wires and likewise refused to let us pay. Prasad drove all the way from Philadelphia to help Alan and me figure this stuff out in person, both at the workshop and out at the observatory. Ken has spent hours, remotely from Yuma AZ, walking me through the various steps in managing the many settings that need to be uploaded and adjusted in order to get things to work. Ken told me he used to run the ATMFREE list-serve, but retired from that after an injury, and he remembered meeting me once at Stellafane. He also very kindly sent us an antenna for the system so that it can run WiFi or BlueTooth more efficiently from inside our massive metal mount.

Alan and I are fairly far along in the conversion, thanks to all this help. I had to learn some of the basics of the Arduino operating environment, which one uses to set all the many, many parameters needed to get the system running. And had to improve my soldering techniques! Fortunately, all the heavy lifting of getting all of the many lines of code working together has been done by Howard, Ken, and the others, so all I had to do was set things up to fit our particular set of choices for the board, the stepper driver, the sub-boards, the gears, and the motors.

Here is our current setup: we have two (now three) MaxESP boards running OnStep version 2.04 (iirc). (Multiple boards because they are cheap and in case one gets fried by a lightning strike or stupidity. It happens!)

They have TMC5160 stepper drivers, connected to two rather beefy NEMA23 stepper motors (200 steps per turn), which I arranged to fit exactly in-line with the worm gear that we will later put back into the mount. We have tweaked the ‘CONFIG.H’ file settings the best we could, and with an enormous amount of help, I think I’ve set the speeds of the stepper motors correctly. The worm gear turns another gear with 20 teeth, which turns another one with 359 teeth. (All made by Byers, and made very, very well.)

(We had NEMA17’s run by the TMC2130 stepper drivers, but we didn’t think they were beefy enough to rotate the very large mount we have, even if we balance it perfectly.)

It’s been a very interesting learning expedition. It’s taken quite a bit of time, but not really very much money. With mass production, the components (screws, capacitors, diodes, resistors, and so on) if purchased in medium quantities, are really very inexpensive.

However, the stepper motors are still not behaving properly. They scream instead of moving, as you can see in this video. I will post the current parameters on the OnStep wiki, where I said. You can see and hear the action in this little video. When I try to slew to any random, dummy target, the steppers will start rotating and also start making a deafening squeal that gets higher in pitch and volume. However, after a little while, both rotors stop turning either completely or almost completely. The smart hand controller pretends that the mount is moving in both axes, but it’s not true.

Right now, I don’t know what is causing this problem.

Anybody have suggestions?

Subscribe

  • Entries (RSS)
  • Comments (RSS)

Archives

  • November 2022
  • October 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • February 2022
  • January 2022
  • December 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • March 2021
  • December 2020
  • October 2020
  • September 2020
  • August 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • September 2019
  • August 2019
  • June 2019
  • May 2019
  • January 2019
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • May 2018
  • March 2018
  • January 2018
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017
  • May 2017
  • April 2017
  • February 2017
  • December 2016
  • September 2016
  • June 2016
  • May 2016
  • April 2016
  • March 2016
  • February 2016
  • January 2016
  • December 2015
  • November 2015
  • August 2015
  • July 2015
  • April 2015
  • March 2015
  • February 2015
  • January 2015
  • December 2014

Categories

  • astronomy
  • astrophysics
  • education
  • flat
  • History
  • Hopewell Observatorry
  • Math
  • monochromatic
  • nature
  • optical flat
  • Optics
  • Safety
  • science
  • teaching
  • Telescope Making
  • Uncategorized

Meta

  • Register
  • Log in

Blog at WordPress.com.

  • Follow Following
    • Guy's Math & Astro Blog
    • Join 48 other followers
    • Already have a WordPress.com account? Log in now.
    • Guy's Math & Astro Blog
    • Customize
    • Follow Following
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...