• My series on making a Newtonian telescope
  • How Leon Foucault Made Telescopes

Guy's Math & Astro Blog

Guy's Math & Astro Blog

Category Archives: flat

Clay Davies’ Links for Telescope Makers

24 Thursday Dec 2020

Posted by gfbrandenburg in astronomy, flat, optical flat, Telescope Making

≈ Leave a comment

Tags

albert highe, CLay Davies, Commercial, dobsonian, explore scientific, Jean Texereau, Mel Bartels, newtonian, R. F. Royce, Reiner Vogel, Royal Astronomical Society of Canada, stargazer steve, stellafane, Telescope Making, trigonometry

I am copying and pasting Clay Davies’ recent article published on a Facebook page for amateur telescope makers, where he gives links to extremely useful sources as well as commentary. I think he did a great job, and want to make this available to more people.

================================= here goes! ================================================

Amateur Telescope Making Resources & Fast Commercial Newtonian Telescopes

  • Observer’s Handbook, Royal Astronomical Society of Canada. Every amateur astronomer should have at least one copy of this book. Every “newby” should read it cover to cover. Old hands should keep it as a reference. Avid astronomers get it every year, because it’s updated annually.
  • How to Make a Telescope, Jean Texereau. A classic book by a superb optician. The author taught many people how to make their own telescopes, including grinding, polishing and figuring their own mirrors. This book offers unique and practical telescope and mount designs I have never seen anywhere else.
  • The Dobsonian Telescope, David Kriege & Richard Berry. Want to knock off an Obsession telescope? Here is your bible, written by the creators of Obsession Telescopes. Here you will find well thought out and time proven designs for truss Dobsonian telescopes from 12.5” to 25” and more. If you are handy, if you use one of these designs and follow step-by-step instructions, you can build a fine truss dobsonian. But use free PLOP software (below) to design your mirror cell.
  • PLOP Automated Mirror Cell Optimization. This free windows software can help you design a “perfect” mirror cell. Just plug in the numbers, and in seconds, you have a mirror cell design. https://www.davidlewistoronto.com/plop/
  • Engineering, Design and Construction of Portable Newtonian Telescopes, Albert Highe. Do you want your next telescope to truly satisfy you? This book dedicates an entire chapter that asks you questions that help you design and build (or buy!) a telescope that will do just that. And it has beautifully engineered contemporary designs for large truss telescopes.
  • Engineering, Design and Construction of String Telescopes, Albert Highe. Beautifully engineered, yet challenging, ultra-light, air transportable newtonian telescope designs.
  • Newt for the Web (Stellafane). This is a simple, yet effective tool for newtonian telescope design. You can design an excellent telescope with just this free tool, plus old school drafting tools like ruler, protractor, pencil and compass. https://stellafane.org/tm/newt-web/newt-web.html
  • Reflecting Telescope Optimizer Suite. Mel Bartels created this wonderful free online newtonian telescope design tool: https://www.bbastrodesigns.com/telescopeCriteriaCalc.html If you explore Mel’s website you will find innovative, ultra-fast dobsonian telescopes, beautiful deep sky sketches, and mind expanding ideas that will probably make you a better observer. https://www.bbastrodesigns.com/The%20New%20Sub-F3%20Richest%20Field%20Telescopes.html
  • Right Angled Triangles Calculator, Cleve Books. Are you building a truss telescope but can’t remember trigonometry? This site makes it easy: http://www.cleavebooks.co.uk/scol/calrtri.htm
  • Stargazer Steve 6” Truss Telescope. A very portable, ultra-light commercial truss telescope. Moderately priced, too! http://stargazer.isys.ca/6inch.html
  • Explore Scientific 8”f3.9 Want a fast scope but don’t want to build it? This fast astrograph optical tube assembly has a carbon fibre tube and weighs 18.3 pounds / 8.3kg. It’s remarkably affordable, too! https://explorescientificusa.com/products/208mm-newtonian-f-3-9-with-carbon-fiber-tube
  • Orion 8” f/3.9 You can save a lot of work by buying a telescope off the shelf, like this one. Similar to the Explore Scientific, but with a steel tube at an irresistable price. And this OTA is under 18 pounds / 8kg! https://www.telescope.com/Orion-8-f39-Newtonian-Astrograph-Reflector-Telescope/p/101450.uts
  • R. F. Royce Telescope Building Projects. Simple newtonian telescope designs by one of the finest opticians on planet Earth. The first telescope I built, a 10”f6, and the second telescope I built, a 6”f8, were both based on Royce’s designs. Both performed far beyond my expectations. In fact, the surrier-trusses for my 8”f4 design were based on the Royce design. http://www.rfroyce.com/Telescope%20Bulding%20Projects.htm Want to build your ultimate lunar and planetary telescope? Click the third link. And… considering how much you can learn from one of the world’s greatest opticians, shouldn’t you click every link? http://www.rfroyce.com/thoughts.htm
  • Reiner Vogel Travel Dobs. If you are interested in designing and building your own telescope, have a look at this website. You will find easy and effective construction techniques and ultralight, ultra-portable telescopes here. And big ones. You’ll find equatorial mounts and observing notes, too! http://www.reinervogel.net/index_e.html?/links_e.html
  • Here is my talk at the RASC, Toronto, (Royal Astronomical Society of Canada) entitled, “Designing and Building a Newtonian Telescope for Wide Field Visual and Air Travel”. You can scroll the video to 38:20 if you want to go directly to my presentation. https://www.youtube.com/watch?v=Gz7TVQkTGCM

A neat geometry lesson! And a rant…

13 Thursday Feb 2020

Posted by gfbrandenburg in education, flat, History, Math, Optics, teaching, Telescope Making, Uncategorized

≈ Leave a comment

Tags

apps, computer, computer-managed instruction, geometry, kaleidoscope, Math, Mirror, programs, reflection, school

Here is some information that teachers at quite a few different levels could use* for a really interesting geometry lesson involving reflections involving two or more mirrors, placed at various angles!

Certain specific angles have very special effects, including 90, 72, 60, 45 degrees … But WHY?

This could be done with actual mirrors and a protractor, or with geometry software like Geometer’s Sketchpad or Desmos. Students could also end up making their own kaleidoscopes – either with little bits of colored plastic at the end or else with some sort of a wide-angle lens. (You can find many easy directions online for doing just that; some kits are a lot more optically perfect than others, but I don’t think I’ve even seen a kaleidoscope that had its mirrors set at any angle other than 60 degrees!)

I am reproducing a couple of the images and text that Angel Gilding provides on their website (which they set up to sell silvering kits (about which I’ve posted before, and which I am going to attempt using pretty soon)).

At 72º you see 4 complete reflections.

When two mirrors are parallel to each other, the number of reflections is infinite. Placing one mirror at a slight angle causes the reflections to curve.

 

https://angelgilding.com/multiple-reflections/

===========

Rant, in the form of a long footnote:

* assuming that the teacher are still allowed to initiate and carry out interesting projects for their students to use, and aren’t forced to follow a scripted curriculum. It would be a lot better use of computers than forcing kids to painfully walk through (and cheat, and goof off a lot) when an entire class is forced to use one of those very expensive but basically worthless highly-centralized, district-purchased computer-managed-instruction apps. God, what a waste of time – from personal experience attempting to be a volunteer community math tutor at such a school, and also from my experience as a paid or volunteer tutor in helping many many students who have had to use such programs as homework. Also when I was required to use them in my own classes, over a decade ago, I and most of my colleagues found them a waste of time. (Not all – I got officially reprimanded for telling my department chair that ‘Renaissance Math’ was either a ‘pile of crap’ or a ‘pile of shit’ to my then-department head, in the hearing of one of the APs, on a teacher-only day.

Keep in mind: I’m no Luddite! I realized early on that in math, science, and art, computers would be very, very useful. I learned how to write programs in BASIC on one of the very first time-share networks, 45 years ago. For the first ten years that my school system there was almost no decent useful software for math teachers to use with their classes unless you had AppleII computers. We had Commodore-64’s which were totally incompatible and there were very few companies (Sunburst was one) putting out any decent software for the latter. So when I saw some great ideas that would be ideal for kids to use on computers to make thinking about numbers, graphs, and equations actually fun and mentally engaging, often I would have to write them my self during whatever free time I could catch, at nights and weekends. Of course, doing this while being a daddy to 2 kids, and still trying to teach JHS math to a full load of students (100 to 150 different kids a day at Francis Junior High School) and running a school math club and later coaching soccer. (I won’t say I was a perfect person or a perfect teacher. I believe I learned to give better math explanations than most, didn’t believe that you either have a ‘m,ath gene’ or you don’t, at times had some interesting projects, and at times was very patient and clear, but had a terrible temper and often not good at defusing things. Ask my kids or my former students!) Later on, I collaborated with some French math teachers and a computer programmer to try to make an app/program called Geometrix for American geometry classes that was supposed to help kids figure out how to make all sorts of geometric constructions and then develop a proof of some property of that situation. It was a failure. I was the one writing the American version, including constructions and tasks from the text I was currently using. There was no way I could anticipate what sorts of obstacles students would find when using this program, until I had actual guinea pig students to use them with. Turns out the final crunch of writing however many hundreds of exercises took place over the summer, and no students to try them on. Figuring out hints and clues would require watching a whole bunch of kids and seeing what they were getting right or wrong. In other words, a lot of people’s full time job for a long time, maybe paying the kids as well to try it out so as to get good feedback, and so on. Maybe it could work, but it would require a lot more investment of resources that the tiny French and American companies involved could afford. We would have really needed a team of people, not just me and a single checker.

I find that none of these computer-dominated online learning programs (much less the one I worked on) can take the place of a good teacher. Being in class, listening to and communicating logically or emotionally with a number of other students and a knowledgeable adult or two, is in itself an extremely important skill  to learn. It’s also the best way to absorb new material in a way that will make sense and be added to one’s store of knowledge. That sort of group interaction is simply IMPOSSIBLE in a class where everybody is completely atomized and is on their own electronic device, engaged or not.

Without a human being trying to make sense out of the material, what I found quite consistently, in all the computerized settings, that most students absorbed nothing at all or else the wrong lessons altogether (such as, ‘if you randomly try all the multiple choice answers, you’ll eventually pick the right one and you can move on to some other stupid screen’; it doesn’t matter that all your prior choices were wrong; sometimes you get lucky and pick the right one first or second! Whee! It’s like a slot machine at a casino!).

By contrast, I found that with programs/apps/languages like Logo, Darts, Green Globs, or Geometer’s Sketchpad, with teacher guidance, students actually got engaged in the process, had fun, and learned something.

I find the canned computer “explanations” are almost always ignored by the students, and are sometimes flat-out wrong. Other times, although they may be mathematically correct, they assume either way too much or way too little, or else are just plain confusing. I have yet to detect much of any learning going on because of those programs.

12-inch Ealing-Made Ritchey-Chretien Telescope is Sold [EDIT]

20 Friday Sep 2019

Posted by gfbrandenburg in flat, Hopewell Observatorry, optical flat, Optics, Telescope Making

≈ 3 Comments

Tags

cassegrain, convex, figuring, for sale, primary mirror, richey-chretien, secondary mirror, Telescope

EDIT: It has now been sold to an ambitious telescope maker in Italy. 

We had a 12-inch Casssegrain optical telescope assembly for sale at an extremely attractive price: just two hundred dollars (or any reasonable offer). You pay for shipping.

The full-thickness primary mirror alone is worth much more than that as a raw piece of unfinished Pyrex! (United Lens charges $450 for an equivalent, 12.5″ diameter, roughly 2″ thick, raw, unfigured, disk of Borofloat!)

The telescope was part of a package (mount-cum-telescope) that was purchased from the Ealing company back in the 1960s by the University of Maryland. The scope itself never gave satisfactory images, so the UMd observatory sold it off in the early 1990s, and it ended up at the Hopewell Observatory about a decade before I became a member. Hopewell kept the mount, which still works quite well, but removed the telescope and replaced it with a 14-inch Celestron Schmidt-Cassegrain.

I recently examined the telescope itself (the one we are selling) and found that it indeed has a hyperbolic primary with a focal length of about 4 feet (so it’s f/4). Presumably, the convex secondary is also a matching hyperboloid, to create a Ritchey-Chretien design, but I don’t feel like perforating a large spherical mirror to create a Hindle sphere to test it properly. In any case, using a 12-inch flat, I was unable to produce decent Ronchi images.

As you may know, figuring and collimating a Richey-Chretien require a LOT of patience, more than I have. My suggestion would be to refigure the primary into a paraboloid, procure a standard flat, elliptical diagonal, and repurpose this as a Newtonian. Refiguring this mirror a task that I don’t feel like taking on, since our observatory already has a 14″ Newtonian, a 14″ SCT, and I already have built a 12.5″ Newtonian of my own. Plus, I am finding that figuring a 16.5″ thin mirror is plenty of work already.

So, our loss could be your gain! Make an offer!

I attach a bunch of photos of the OTA from several viewpoints, including a ronchigram. The mirror has been cleaned off since these picture were made; the little electronic motor was for remote focusing of the secondary.

IMG_0699
IMG_0702
IMG_0703
IMG_8151
IMG_8153
IMG_8160

IMG_0699
IMG_0702
IMG_0703
IMG_8151
IMG_8153
IMG_8160

IMG_0700
IMG_0711
IMG_8230
IMG_8233

Bath Interferometer at Stellafane

06 Tuesday Aug 2019

Posted by gfbrandenburg in astronomy, flat, monochromatic, optical flat, Optics, Telescope Making

≈ Leave a comment

Tags

Bath interferometry

I am posting some photos and videos of the demonstration of a Bath interferometer on Saturday at the 2019 Stellafane convention.

IMG_4952

IMG_4955

IMG_4958IMG_4959

IMG_4961IMG_4962

Silvering Mirrors, and More, at Stellafane

05 Monday Aug 2019

Posted by gfbrandenburg in astronomy, flat, History, Math, monochromatic, optical flat, Optics, science, teaching, Telescope Making, Uncategorized

≈ 3 Comments

For me, these were the two most significant demos at the 2019 Stellafane Convention in Springfield, Vermont:

(1) Silvering large mirrors, no vacuum needed

We had a demonstration by Peter Pekurar on how to apply a layer of Silver (metallic Ag, not aluminum) onto a telescope mirror, accurately, with a protective, non-tarnishing overcoat, that works well. I looked through such a scope; the view was quite good, and I was told that interferograms are great also.

What’s more, the process involves overcoating a mirror with spray bottles of the reagents, without any vacuum apparatus needed at all. Note: Silver coated, not aluminum coated. This is big for me because the upper limit at our club’s aluminizer is 12.5″, but some of us are working on larger mirrors than that; commercial coaters currently charge many hundreds of dollars to coat them.

You can find information on some of these materials at Angel Gilding. Peter P said he will have an article out in not too long. Here are a few photos and videos of the process:

IMG_4972

Finished mirror; notice it’s a little blotchy

 

 

IMG_4985IMG_4987

(2) Demo and links for Bath Interferometer (see http://gr5.org/bath )

How to set up and use a Bath interferometer to produce highly accurate interferograms of any mirror for many orders of magnitude less cash than a Zygo interferometer. As I wrote earlier, Alan Tarica had taken the lead on fabricating one at the CCCC – NCA ATM workshop, and we eventually got it to work, but found it rather frustrating and fiddly to use.

The presenter is a HS teacher, and it shows: he explains things very clearly! On his website ( http://gr5.org/bath ) you can get plans for 3-D printing the parts for the Bath device, if you have any access to a 3-D printer, so you can print the parts out for yourself. He also has links to vendors that are selling parts for it, such as certain small lenses, mirrors and beam splitters. He shows you where you can get them for very little money from Surplus Shed and such places. Or you can purchase his really inexpensive kits that he’s already 3-D printed for you. Plus parts for an XYZ stage, which you will need for fine focus. The whole setup (not counting mirror stand and two tripods, which he assumes you have access to already) is under $130.

I will need to look carefully at our setup as built almost completely by Alan, and see how it differs and what we would need to do to make it better. The problem is that there are lots of little, tiny parts, and many of them need to be adjustable. We saw him doing LOTS of little adjustments!

Before his talk, I had absolutely no idea how this (or similar interformeters) really worked. Now I understand: the interference fringes that we see are really contour lines – like we see on on a USGS topo map, only with the mirror tilted in one direction or the other. A big difference with the USGS topo map is that there, the contour lines (isohypses – a new word for me today) are often 10 feet to 100 meters apart. In interferometry, the contour intervals are either one or one-half lambda (wavelength of light) apart – a really tiny amount! We need that level of accuracy because the surface we are studying is sooooooo flat that no other measuring system can work. His explanation of this whole thing now makes perfect sense to me. And the purpose of the software (free!) is to un-slant the mirror and re-draw it using the countour-line information.

Beautifully clear explanation!

Caution: a friend who works professionally in optics told me his team had made three Bath interferometers, using cheap but good quality ebay xyz stages, and found that they were just too much trouble; so they borrowed a very expensive commercial interferometer (costing many tens of kilobucks) from another department and are using that instead. I’m not selling my house to get a Zygo interferometer!!! But I will try the Bath interferometer instead.

 

 

Videos on Telescope Making from Gordon Waite

03 Thursday Jan 2019

Posted by gfbrandenburg in astronomy, astrophysics, flat, optical flat, Optics, Telescope Making

≈ Leave a comment

Tags

figuring, flats, Gordon Waite, machine, optical, Optics, parabolizing, Polishing, Telescope Making, testing optics, Waite Research, youtube

Gordon Waite is a commercial telescope maker who has made a number of very useful YouTube videos on his grinding, polishing, parabolizing, and testing procedures. I thought some of my readers might be interested in viewing them. The link is here, or else you can copy and paste this:

https://www.youtube.com/user/GordonWaite/videos

Difficulties in Using the Matching Ronchi Test on a 12″ Cassegrain Mirror

08 Saturday Sep 2018

Posted by gfbrandenburg in astronomy, flat, Hopewell Observatorry, optical flat, Optics, Telescope Making

≈ 2 Comments

Tags

Astro Bananas, cassegrain, couder, double pass auto collimation, ealing, foucault, Hopewell Observatory, matching Ronchi, Mel Bartels, Ronchi, ronchigram

The other regulars and I at the DC ATM group at the CCCC have been trying to test a 12 inch Cassegrain mirror and telescope manufactured nearly 50 years ago by a company called Ealing and currently owned by the Hopewell Observatory, of which I am a member. It hasn’t been easy. I discussed this earlier on Cloudy Nights.

Reports from several people, including Gary Hand and the late Bob Bolster, indicated that the optics on this mirror weren’t good at all. Apparently the folks at the University of Maryland’s observatory were sufficiently unhappy with it that they either sold it or gave it to National Capital Astronomers, a local astronomy club, who in turn gave it or sold it to Hopewell Observatory.

With a plain-vanilla Ronchi test, we could see that the mirror was very smooth and continuous, with no turned edge, astigmatism, or bad zones. With the Foucault/Couder zonal test (aka “Foucault” test) , I got results indicating that it was seriously overcorrected: some sort of hyperboloid, rather than the standard paraboloid characteristic of classical Cassegrain telescopes, which have a parabolic primary mirror and a hyperbolic secondary mirror.

However, I have begun losing my faith in my zonal readings, because they often seem to give results that are way out of whack compared to other testing methods.

So we decided to do some additional tests: the Double-Pass Auto-Collimation (DPACT) test used by Dick Parker, as well as the Matching Ronchi test (MRT).

The DPACT is very fiddly and exacting in its setup. We used (and modified) the setup lent to us by Jim Crowley and illustrated by him at his Astro Bananas website. Our results seem to show that the mirror is in fact NOT parabolic, rather, overcorrected, which confirms my Foucault measurements. If it were a perfect paraboloid, then the ronchi lines would be perfectly straight, but they definitely are NOT: they curve one way when inside the focal point, and curve the other when the tester is outside the focal point.

We also tested the entire setup on a radio tower that was about half a mile (~1km) distant. We found that the images were somewhat blurry no matter what we did.

We also attempted the MRT on the same mirror. However, requires very accurate photography and cutting-and-pasting skills in some sort of graphics programs. What you are inspecting is the curvature of the Ronchi lines. Here is the result that Alan T and I got last night:

matching ronchi for 12 inch cass

In black is the ideal ronchigram for this mirror, according to Mel Bartels’ website. The colored picture is the one we made with either my cell phone or the device I finished making earlier this week, shown in my previous post. Here are the two images, separated rather than superimposed:

IMG_1337

ideal ronchigram 12 inch cass ealing

The mirror’s focal length is 47.5″ and the grating has 100 lines per inch, shown somewhat outside of the radius of curvature. The little ‘eyelash’ on the lower left is simply a stray wire that was in the way, and doesn’t affect the image at all. The big hole in the middle is there because the mirror is a cassegrain.

I don’t know about you, but I don’t really see any differences between the real mirror and the theoretical mirror. Do you?

Conclusion

So, what does this all mean?

  • One possibility is that the mirror is in fact perfectly parabolic (as apparently shown by the MRT, but contrary to what I found with Foucault and DPACT) but there is something wrong with the convex, hyperbolic secondary.
  • Another possibility is that the mirror is in fact NOT parabolic, but hyperbolic, as shown by both my Foucault measurements and the DPACT (and contrary to the MRT), which would mean that this telescope was in fact closer to a Ritchey-Chretien; however, since it was marketed as a classical Cassegrain, then the (supposedly) hyperbolic secondary was in fact not tuned correctly to the primary.
  • The answer is left as an exercise for the reader.
  • A star test would be the best answer, but that would require being able to see a star. That hasn’t happened in these parts for quite some time. In addition, it would require an eyepiece holder and a mount of some sort. Or else setting up an indoor star…

Calculations with a Curious Cassegrain

08 Sunday Oct 2017

Posted by gfbrandenburg in astronomy, flat, Hopewell Observatorry, optical flat, Optics, Telescope Making

≈ Leave a comment

Tags

cassegrain, completing the square, ellipsoid, hyperbola, hyperboloids, Optics, parabola, sphere, testing

I continue to try to determine the foci of the apparent hyperbolic primary on the Hopewell Ealing 12inch cassegrain, which has serious optical problems.

My two given pieces of information are that the mirror has a radius of curvature (R) of 95 inches by my direct measurement, and its Schwarzschild constant of best fit,(generally indicated by the letter K)  according to FigureXP using my six sets of Couder-mask Foucault readings, is -1.112.

I prefer to use the letter p, which equals K + 1. Thus, p = -0.112. I decided R should be negative, that is, off to the left (I think), though I get the same results, essentially, if R is positive, just flipped left-and-right.

One can obtain the equation of any conic by using the formula

Y^2 – 2Rx + px^2 = 0.

When I plug in my values, I get

Y^2 + 190x -0.112x^2 = 0.

I then used ordinary completing-the-square techniques to find the values of a, b, and c when putting this equation in standard form, that is something like y^2/a^2 – x^2/b^2 = 1

Omitting some of the steps because they are a pain to type, and rounding large values on this paper to the nearest integer (but not in my calculator), I get

I got

y^2 – 0.112(x – 848)^2 = – 80540

and eventually

(x – 848)^2 / 848^2 – y^2 / 248^2 = 1

Which means that a is 848 inches, which is over 70 feet, and b is 284 inches, or almost 24 feet. Since a^2 + b^2 = c^2, then c is about 894. And the focal points are 894 inches from the center of the double-knapped hyperboloid, which is located at (848, 0), so it looks a lot like this:

cass equations

Which of the two naps of this conic section is the location of the actual mirror? I suppose it doesn’t make a big difference.

Making that assumption that means that the foci of this hyperbolic mirror are about 894 – 848 = 46 inches from the center of the primary mirror. I don’t have the exact measurement from the center of the primary to the center of the secondary, but this at least gives me a start. That measurement will need to be made very, very carefully and the location of the secondary checked in three dimensions so that the ronchi lines are as straight as possible.

It certainly does not look like the common focal point for the primary and secondary will be very far behind the front of the secondary!

Bob Bolster gave me an EXTREMELY fast spherical mirror that is about f/0.9 and has diameter 6 inches. I didn’t think at first that would be useful for doing a Hindle sphere test, since I thought that the focal point in back of the secondary would be farther away. But now I think it will probably work after all. (Excellent job as usual, Bob!) (I think)

 

Trying to Test a 50-year-old Cassegran Telescope

07 Thursday Sep 2017

Posted by gfbrandenburg in astronomy, flat, Hopewell Observatorry, Math, science, Telescope Making

≈ Leave a comment

Tags

artificial star, celestron, classical cassegrain, couder, double pass autocollimation test, ealing, FigureXP, focus, foucault, hyperbolic, optical tube assembly, parabolic, primary, refurbishing, ritchey-chretien, Ronchi, schmidt-cassegrain, secondary, spherical, Telescope

We at the Hopewell Observatory have had a classical 12″ Cassegrain optical tube and optics that were manufactured about 50 years ago.; They were originally mounted on an Ealing mount for the University of Maryland, but UMd at some point discarded it, and the whole setup eventually made its way to us (long before my time with the observatory).

 

The optics were seen by my predecessors as being very disappointing. At one point, a cardboard mask was made to reduce the optics to about a 10″ diameter, but that apparently didn’t help much. The OTA was replaced with an orange-tube Celestron 14″ Schmidt-Cassegrain telescope on the same extremely-beefy Ealing mount, and it all works reasonably well.

 

Recently, I was asked to check out the optics on this original classical Cassegrain telescope, which is supposed to have a parabolic primary and a hyperbolic secondary. I did Ronchi testing, Couder-Foucault zonal testing, and double-pass autocollimation testing, and I found that the primary is way over-corrected, veering into hyperbolic territory. In fact, Figure XP claims that the conic section of best fit has a Schwartzschild constant of about -1.1, but if it is supposed to be parabolic, then it has a wavefront error of about 5/9, which is not good at all.

Here are the results of the testing, if you care to look. The first graph was produced by a program called FigureXP from my six sets of readings:

figure xp on the 12 inch cass

my graph of 12 inch cass readings

I have not yet tested the secondary or been successful at running a test of the whole telescope with an artificial star. For the indoor star test, it appears that it only comes to a focus maybe a meter or two behind the primary! Unfortunately, the Chevy Chase Community Center where we have our workshop closes up tight by 10 pm on weekdays and the staff starts reminding us of that at about 9:15 pm. Setting up the entire indoor star-testing rig, which involves both red and green lasers bouncing off known optical flat mirrors seven times across a 60-foot-long room in order to get sufficient separation for a valid star test, and moving two very heavy tables into said room, and then putting it all away when we are done, because all sorts of other activities take place in that room. So we ran out of time on Tuesday the 5th.

A couple of people (including Michael Chesnes and Dave Groski) have suggested that this might not be a ‘classical Cassegrain’ – which is a telescope that has a concave, parabolic primary mirror and a convex, hyperbolic secondary. Instead, it might be intended to be a Ritchey-Chretien, which has both mirrors hyperbolic. We have not tried removing the secondary yet, and testing it involves finding a known spherical mirror and cutting a hole in its center, and aligning both mirrors so that the hyperboloid and the sphere have the exact same center. (You may recall that hyperboloids have two focal points, much like ellipses do.)

Here is a diagram and explanation of that test, by Vladimir Sacek at http://www.telescope-optics.net/hindle_sphere_test.htm

hindle sphere test

FIGURE 56: The Hindle sphere test setup: light source is at the far focus (FF) of the convex surface of the radius of curvature RC and eccentricity ε, and Hindle sphere center of curvature coincides with its near focus (NF). Far focus is at a distance A=RC/(1-ε) from convex surface, and the radius of curvature (RS) of the Hindle sphere is a sum of the mirror separation and near focus (NF) distance (absolute values), with the latter given by B=RC/(1+ε). Thus, the mirrorseparation equals RS-B. The only requirement for the sphere radius of curvature RS is to be sufficiently smaller than the sum of near and far focus distance to make the final focus accessible. Needed minimum sphere diameter is larger than the effective test surface diameter by a factor of RS/B. Clearly, Hindle test is limited to surfaces with usable far focus, which eliminates sphere (ε=0, near and far focus coinciding), prolate ellipsoids (1>ε>0, near and far foci on the same, concave side of the surface), paraboloid (ε=1, far focus at infinity) and hyperboloids close enough to a paraboloid to result in an impractically distant far focus.

We discovered that the telescope had a very interesting DC motor – cum – potentiometer assembly to help in moving the secondary mirror in and out, for focusing and such. We know that it’s a 12-volt DC motor, but have not yet had luck tracking down any specifications on that motor from the company that is the legatee of the original manufacturer.

Here are some images of that part:

IMG_8207
IMG_8210
IMG_8224

Puzzlement when Trying to Figure a Convex Surface Through the Back

14 Saturday Nov 2015

Posted by gfbrandenburg in astronomy, flat, optical flat, Telescope Making

≈ Leave a comment

Tags

ATM, convex, figuring, polarizing filters, Ronchi, strain

Have you ever tried to make a convex optical surface?

If so, you know that it’s much more challenging than a concave one, since the rays of light do not come to a focus at all.

Some of us* at the Amateur Telescope Making workshop here in Washington DC have made several attempts at doing this, pretty much without success. I would like to show you some weird images that we got when we tried to ‘figure’ the convex surface by performing a Ronchi test from the back side, looking through what was supposed to be a flat.

What we find is that even though the glass itself is very clear and free of visible strain when seen by the naked eye or when using crossed polarized filters, it looks like we are looking through an extremely murky and totally un-annealed piece of ancient Venetian glass, causing all sorts of weird striations in what should otherwise be nice, smooth Ronchi lines.

These pictures go in order from outside the radius of curvature to inside the ROC.

IMG_3656 IMG_3660 IMG_3663 IMG_3665 IMG_3667 IMG_3668

You might well think that the glass itself has lots of strain left in it, causing the very weird patterns that you see here. I can prove that this is not the case by showing you a short video that we made with crossed polarizing filters of the 5-inch diameter blank itself and two pieces of plastic (the protective covers for one of the filters). Judge for yourself.

This is not the first time that this strange phenomenon has occurred.

Any suggestions from those with actual experience would be extremely welcome.

===================

* Me, Nagesh K, and Oscar O.

← Older posts

Subscribe

  • Entries (RSS)
  • Comments (RSS)

Archives

  • November 2022
  • October 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • February 2022
  • January 2022
  • December 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • March 2021
  • December 2020
  • October 2020
  • September 2020
  • August 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • September 2019
  • August 2019
  • June 2019
  • May 2019
  • January 2019
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • May 2018
  • March 2018
  • January 2018
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017
  • May 2017
  • April 2017
  • February 2017
  • December 2016
  • September 2016
  • June 2016
  • May 2016
  • April 2016
  • March 2016
  • February 2016
  • January 2016
  • December 2015
  • November 2015
  • August 2015
  • July 2015
  • April 2015
  • March 2015
  • February 2015
  • January 2015
  • December 2014

Categories

  • astronomy
  • astrophysics
  • education
  • flat
  • History
  • Hopewell Observatorry
  • Math
  • monochromatic
  • nature
  • optical flat
  • Optics
  • Safety
  • science
  • teaching
  • Telescope Making
  • Uncategorized

Meta

  • Register
  • Log in

Blog at WordPress.com.

  • Follow Following
    • Guy's Math & Astro Blog
    • Join 48 other followers
    • Already have a WordPress.com account? Log in now.
    • Guy's Math & Astro Blog
    • Customize
    • Follow Following
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...