• My series on making a Newtonian telescope
  • How Leon Foucault Made Telescopes

Guy's Math & Astro Blog

Guy's Math & Astro Blog

Tag Archives: Bob Bolster

First Time Installation of OnStep Board with NEMA23 Stepper Motors in Ealing Mount at Hopewell

03 Monday Jan 2022

Posted by gfbrandenburg in astronomy, Hopewell Observatorry, Optics, science, Telescope Making

≈ 2 Comments

Tags

ATM, Bob Bolster, dobsonian, Hopewell Observatory, Howard Dutton, OnStep, OnStep Conversion, Telescope

A 3-minute video of the results of our first-time installation of something called an OnStep conversion. We are replacing the telescope drive of a venerable but beautifully machined telescope mount, located at a small group-owned observatory called Hopewell, atop a ridge called Bull Run Mountain*.

It’s alive!

Sorry, it’s not the greatest or clearest video. Also, I mistakenly state at about 0:25 in the video that the right ascension axis was turning at 12 RPM, but it’s not: I should have said 5 RPM, or one revolution in 12 seconds.

You can hear some stuttering of one of the motors. You are right, that is not a good sound. We were able to get it to stop and start making that noise and motion by adjusting the precise positioning of some of the gears. It will take some time and experimentation to get that perfect.

Later on (not captured in this video), when I was trying to slew in the declination axis at the highest speed possible, the stepper motor once again screamed and halted. I’m hopeful that all of those problems can be fixed by doing one or more of these things:

  • 1) adjusting the fit of all those gears;
  • (2) changing certain parameters of microstepping and current to the stepper motors in software; and/or
  • (3) increasing the voltage to the board from 18 VDC to 24 VDC.

I’ll need to test things out on my desk at home, using the same OnStep board, but without the gears and timing belt. (That stuff was a royal PITA to remove screw back into place, and none of us have any desire to take them back out again!) I have some identical extra stepper motors that I can test out, with gloved hands, to see if it is possible to stop the motors from turning. Right now, I still don’t think they are putting out the amount of torque needed.

================================

*Yes, that famous Bull Run of Civil War fame is not far away. However, our observatory is named after a different geological feature, namely the Hopewell Gap that cuts through the hard rock of Bull Run Mountain right about where where the creek called Little Bull Run begins.

If you are reading this, you probably know that serious amateur, and all professional, astronomical telescopes (except for Dobs) are generally driven by ‘clock drives’ so that the object one is viewing or photographing stays properly centered as the earth rotates imperceptibly beneath us. The original Ealing motor drive at Hopewell, while turning excellent Ed Byers gears, had been an intermittent problem ever since it was delivered to the University of Maryland about 50 years ago. It was in fact not operational when they sold it to us for a pittance about 30 years ago. (If you go to the University of Maryland Observatory site I linked to, the scope we have now is the one in the center of the 1970s – era photo labeled ‘Figure 4’.)

Bob Bolster, one of the founding members of Hopewell observatory, disassembled the drive, modified it considerably, and got it working again, several years before I joined the group. The scope worked, off and on, with a very complex clutch system for ‘fast’ and ‘slow’ movement of the scope, for most of the rest of the last 25 or so years, except for occasional motor burnouts and clutch replacements. Also unfortunately, the optics on the original 12″ Ritchey-Chretien telescope, were not very good, so we removed them, had them in an attic for many years, re-tested them, and finally sold the glass and the holders, for a pittance, to someone in Italy who wanted to try to re-figure them.

This was originally a ‘push-to’ telescope, meaning that one loosened up two Byers clutches (one for each axis), located the desired target in the sky, tightened the two clutches, did some fine tuning with an electric hand paddle to center the target more precisely, and then allowed the telescope drive to then keep the object in the center of the eyepiece or camera field of view as long as one wanted. It originally came with metal setting circles (basically, finely-made protractors that showed where the scope is pointing vis-a-vis the polar and declination axes), which made finding targets possible, though not trivial!

About 15 years ago, Bolster (with some help from me) installed Digital Setting Circles, which used a rotary encoder on each axis, along with a small hand-held computer and screen display, to allow one to select a given target; the DSC hand paddle’s display then would indicate how far one should rotate the scope along those axes to find the desired celestial object; when it was in the field of your widest eyepiece, one used the hand paddle to center it more precisely.

Converting this scope to an OnStep drive will, I hope, make this a Go-To scope in which one can command the telescope to aim at whatever target one desires.

Unfortunately, right now, the fastest it seems to rotate in Declination, with no load whatsoever (all scopes have been removed, so no balance or inertia problems) is about one degree per second. So doing a 180-degree turn in a North-South direction would take a full three minutes. A 30-degree turn would take 30 seconds. Can we make this a bit faster? I hope so.

I wasn’t able to really slew in right ascension (East-West) because the counterweight box, even though empty, seems to require too much torque to rotate right now.

Bolster passed away a few years ago, and this summer, the moment I had been dreading finally arrived: the drive on the Ealing died again, and his amazing skills and tenacity in fixing such problems was gone with him. What’s more, in his final years, his incurable, chronic idiopathic neuropathy made it literally impossible for him to speak, and even typing email responses to the rest of us took a very long time. So most of his wealth of knowledge and experience died with him.

As indicated in my earlier posts (here, here, here, and here), with help from others, I was able to take the two motor setups for the two axes out from the mount and get them working again on my workbench in their original format. I was even able to order and install material for the clutches. However, I discovered that one needed to adjust the clutches very, very precisely, or else they wouldn’t work at all.

I couldn’t figure out how to do that.

And nobody else who belongs to our observatory volunteered to help out, except for removing the scopes and drives from their former positions inside the mount.

So I decided to convert to a totally different type of telescope drive, one inspired by the Arduino boards and 3-D printers. A group of really smart and resourceful hobbyists (engineers?) designed a system around the Arduino environment that uses inexpensive off-the-shelf printed circuits and complex sub-boards and components, used originally mostly in the 3-D printers that have become so popular, to drive at telescope just the way astronomers want them to be driven.

Apparently, there have been many, many OnStep successes, but what we are doing may be the largest and most massive mount to date that has done such a conversion.

I was warned that the entire process would take some months. Those warnings were correct. But that’s OK. I’m retired, I have time, and I have access to tools and people who are interested in helping. What’s more, I have learned a whole lot about modern electronics, and my soldering skills are much better than they ever were.

I’d again like to thank Alan Tarica (who’s physically helped a **tremendous** amount), Prasad Agrahar (who first showed me the OnStep conversions he had done on a much smaller equatorial mount), Howard Dutton (who first conceived and implemented OnStep), Ken Hunter (who made and **donated** to us a complete, functional OnStep board together with all sorts of accessories and walked me by phone and video through many of my fumbling first steps), Khalid Bahayeldin, George Cushing, and many others.

Some Progress – AT LAST! – With Figuring the 16.5″ f/4.5 Thin Mirror That Headlines This Blog

10 Saturday Nov 2018

Posted by gfbrandenburg in astronomy, Hopewell Observatorry, Optics, Safety, Telescope Making

≈ Leave a comment

Tags

Bob Bolster, George Ritchey, Grinding, Hopewell Observatory, matching Ronchi, Mel Bartels, Polishing, Ronchi, ronchigram, Telescope Making, testing

I have been wrestling with this mirror for YEARS. It’s not been easy at all. The blank is only about twice the diameter of an 8″ mirror, but the project is easily 10 times as hard as doing an 8-incher. (Yes, it’s the one in the photo heading this blog!)

Recently I’ve been trying to figure it using a polishing/grinding machine fabricated by the late Bob Bolster (who modeled his after the machine that George Ritchey invented for the celebrated 60″ mirror at Mount Wilson over a century ago). That’s been a learning exercise, as I had to learn by trial and error what the machine can and cannot do, and what strokes produce what effects. The texts and videos I have seen on figuring such a large mirror with a machine have not really been very helpful, so it’s mostly been trial and error.

My best results right now seem to come from using an 8″ pitch tool on a metal backing, with a 15 pound lead weight, employing long, somewhat-oval strokes approximately tangential to the 50% zone. The edge of the tool goes about 5 cm over the edge of the blank.

This little movie shows the best ronchigrams I have ever produced with this mirror, after nearly 6 hours of near-continuous work and testing. Take a look:

Final movie Nov 9

Final movie Nov 9

And compare that to how it used to look back in September:

hill and anomaly on 16

hill and anomaly on 16

 

Also compare that to the theoretically perfect computed ronchigrams from Mel Bartels’ website:

perfect theoretical ronchigrams for guy's 42 cm mirror

Part of the reason this mirror has taken so long is that after grinding and polishing by hand some years ago, I finally did a proper check for strain, and discovered that it had some pretty serious strain. I ended up shipping it out to someone in Taos, New Mexico who annealed it – but that changed the figure of the mirror so much that I had to go back to fine grinding (all the way back to 120 or 220 grit, I think), and then re-polishing, all by hand. I tried to do all of that, and figuring of the mirror, at one of the Delmarva Mirror Making Marathons. It was just too much for my back — along with digging drainage ditches at Hopewell Observatory, I ended up in a serious amount of pain and required serious physical therapy (but fortunately, no crutches), so this project went back into storage for a long, long time.

Recently I’ve tried more work by hand and by machine. Unfortunately, when I do work by hand, it seems that almost no matter how carefully I polish, I cause astigmatism (which I am defining as the mirror simply not being a figure of rotation) which I can see at the testing stand as Ronchi lines that are not symmetrical around a horizontal line of reflection. (If a Ronchi grating produces lines that look a bit line the capital letters N, S, o Z, you have astigmatism quite badly. If astigmatism is there, those dreaded curves show up best when your grating is very close to the center of curvature (or center of confusion) of the central zone.

Using this machine means controlling or guessing at a LOT of variables:

  1. length of the first crank;
  2. length (positive or negative) of the second crank;
  3. position of the slide;
  4. diameter of the pitch lap;
  5. composition of the pitch;
  6. shape into which the pitch lap has been carved;
  7. amount of time that the lap was pressed against the lap;
  8. whether that was a hot press or a warm press or a cold press;
  9. amount of weight pushing down on the lap;
  10. type of polishing agent being used;
  11. thickness or dilution of polishing agent;
  12. temperature and humidity of the room;
  13. whether the settings are all kept the same or are allowed to blend into one another (eg by moving the slide);
  14. time spent on any one setup with the previous eleven or more variables;

Here is a sketch of how this works

bolster's ritchey-like machine

Subscribe

  • Entries (RSS)
  • Comments (RSS)

Archives

  • December 2025
  • November 2025
  • October 2025
  • September 2025
  • July 2025
  • January 2025
  • November 2024
  • October 2024
  • August 2024
  • July 2024
  • May 2024
  • April 2024
  • January 2024
  • December 2023
  • October 2023
  • August 2023
  • June 2023
  • May 2023
  • April 2023
  • November 2022
  • October 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • February 2022
  • January 2022
  • December 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • March 2021
  • December 2020
  • October 2020
  • September 2020
  • August 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • September 2019
  • August 2019
  • June 2019
  • May 2019
  • January 2019
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • May 2018
  • March 2018
  • January 2018
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017
  • May 2017
  • April 2017
  • February 2017
  • December 2016
  • September 2016
  • June 2016
  • May 2016
  • April 2016
  • March 2016
  • February 2016
  • January 2016
  • December 2015
  • November 2015
  • August 2015
  • July 2015
  • April 2015
  • March 2015
  • February 2015
  • January 2015
  • December 2014

Categories

  • astronomy
  • astrophysics
  • education
  • flat
  • History
  • Hopewell Observatorry
  • Math
  • monochromatic
  • nature
  • optical flat
  • Optics
  • Safety
  • science
  • teaching
  • Telescope Making
  • Uncategorized

Meta

  • Create account
  • Log in

Blog at WordPress.com.

  • Subscribe Subscribed
    • Guy's Math & Astro Blog
    • Join 53 other subscribers
    • Already have a WordPress.com account? Log in now.
    • Guy's Math & Astro Blog
    • Subscribe Subscribed
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...