More progress with the 22-inch wide, 4-inch thick mystery glass.
It took four of us old farts- Jim Kaiser, Alan Tarica, Tom Crone, and me – to extract the mirror from its case (which was located under a very heavy Draper-style grinding and polishing machine) roll it onto a little stand we fabricated on a decent gym scale I borrowed from my gym ( http://www.True180.fitness ) and weigh it.
We were very careful when moving that heavy mirror. Nobody got hurt in any way. When putting the mirror back into its sturdy wood carrying box, we used ancient Egyptian technology of little rollers, and it worked like a charm.
The bathroom scale we had used earlier, up at Hopewell was very, very wrong. We found that the weight of the glass was really 212 pounds (about 96 kilograms, or 96,000 grams), not 130 pounds. Its volume was 20,722 cc, so its density is roughly 4.6. Will have to see what types of glass have roughly that density and an index of refraction of about 1.72 to 1.76.
I heard from one veteran telescope maker:
“I’ve been in the Tucson astronomy club for many decades and also in the optics industry there. Most all institutions that had connections to astronomy or optics in the 60s got portions of several semi loads of “glass bank glass”, glasses that at one point in the past were considered strategic materials for certain optical designs/systems. There was a wide variety of materials, but almost all was identified in some way. We’re there any markings ar data scribed in the glass? The largest I saw was about 15”, so yours might be a different source.
“A co-worker of mine has identified several mystery glasses from an accurate determination of density. Seems like you should be able to get better results w/a more accurate scale. Also many glass types made decades ago are obsolete – my friend has some older glass catalogs that might help you determine what it might be with more accurate numbers.”
So these were cast-offs from the Military Industrial Complex, basically: pieces of glass that the military decided it no longer needed for projects that had either been completed or abandoned, and that they didn’t feel like storing any more. So they gave them away to groups like National Capital Astronomers and Hopewell Observatory.
The only markings on the glass are the following: a heavily inscribed (by hand) apparent date of 2-8-56, which probably means either February 8 of 1956 or the 2nd of August 1956. Judging by the handwriting style of the numerals, it was probably Feb. 8 of 1956 (US style). Under that are the numerals 0225, which we have no idea about. In pencil, someone with US-style handwriting wrote what looks like “Low #” in cursive. Again, we have no idea what that means.
About a week week ago, the right ascension (or RA) drive on a vintage mount at the Hopewell Observatory stopped working. Instead of its usual hum, it began making scraping noises, and then ground to a halt. (This drive is the one that allows one to track the stars perfectly as the earth slowly rotates.)
Another member and I carefully removed the drive mechanism, and I took it home. At first, I thought it was the motor itself, but after examining it carefully, I noticed that some clutch pads inside the gearbox had come unglued, causing the clutch plates to be cockeyed. The motor itself worked just fine when disconnected from the gear box.
I recalled that the pads and the clutch had been very problematic, and that our resident but now-deceased electro-mechanical-optical wizard Bob Bolster had had to modify the gearbox quite a bit. I carefully disassembled the gearbox and used acetone to remove all the old glue that he had used to glue the pads on. After doing some research to find some equivalent pad material, I yesterday ordered some new gasket material with adhesive backing from McMaster-Carr. Lo and behold, I received it TODAY! Wow!
I cut out new pads, re-assembled everything, and the gears and worm drive work just fine. Not only that: there were no screws or nuts left over!
In addition, I now see how we can replace the extremely complicated partially-analog clutch-and-drive mechanism, in both RA and in Declination with a much simpler stepper-motor system using something called OnStep.
Here is a photo of the some of the innards of the scope:
A bit complicated, no?
In the next photo, my pencil is pointing to the clutch pads inside the gear box that had come loose, causing the clutch plates to become cockeyed, jamming the gears. The clutch is so that the observer can ever-so-slightly tweak the telescope forward or backwards in RA, in order to center the target. There is another gearbox for the declination, but it’s still working OK, so we left it alone.
The synchronous gear-motor in the background. My pencil is pointing to the problem.
Of course, we still have to re-install the gearbox back in the scope.
Bob Bolster, mentioned above, was one of the founding members of the Hopewell Observatory. He was an absolute wizard at fixing things and keeping this telescope mount going, but he is no longer alive. I was afraid that I would not be able to fix this problem, but it looks like I’ve been successful.
I append an image of a very beautifully-refurbished Ealing telescope and mount – similar to the one owned by Hopewell – that belongs to the Austin Astronomical Society. Ours is so much more beat up than this one that it’s embarrassing! Plus, both we and the University of Maryland were unable to get the telescope itself, which is a Ritchey-Chretien design, ever to work properly. So we sold the mirror and cell to a collector in Italy for a pittance, and installed four other, smaller scopes on the mount instead.
Many years ago, the late Bob Bolster, a founding member of Hopewell Observatory and an amazing amateur telescope maker, got hold of a large piece of glass, perhaps World War Two military surplus left over from the old Bureau of Standards.
I have no idea what it is made out of. If Bob had any clue about its composition, he didn’t tell anyone.
Its diameter is 22 inches, and its thickness is about 3.25″. It has a yellowish tint, and it is very, very heavy.
If you didn’t know, telescope lenses (just like binocular or camera lenses) are made from a wide variety of ingredients, carefully selected to refract the various colors of light just so. Almost all glass contains quartz (SiO2), but they can also contain limestone (CaCO3), Boric oxide (B2O3), phosphates, fluorides, lead oxide, and even rare earth elements like lanthanum or thorium. This linkwill tell you more than you need to know.
If you are making lenses for a large refracting telescope, you need to have two very different types of glass, and you need to know their indices of refraction very precisely, so that you can calculate the the exact curvatures needed so that the color distortions produced by one lens will be mostly canceled out by the other piece(s) of glass. This is not simple! The largest working refractor today is the Yerkes, with a diameter of 40 inches (~1 meter). By comparison, the largest reflecting telescope made with a single piece of glass today is the Subaru on Mauna Kea, with a diameter of 8.2 meters (323 inches).
For a reflecting telescope, one generally doesn’t care very much what the exact composition of the glass might be, as long as it doesn’t expand and contract too much when the temperature rises or falls.
We weren’t quite sure what to do with this heavy disk, but we figured that before either grinding it into a mirror or selling it, we should try to figure out what type of glass it might be.
Several companies that produce optical glass publish catalogs that list all sorts of data, including density and indices of refraction and dispersion.
Some of us Hopewell members used a bathroom scale and tape measures to measure the density. We found that it weighed about 130 pounds. The diameter is 22 inches (55.9 cm) and the thickness is 3 and a quarter inches (8.26 cm). Using the formula for a cylinder, namely V = pi*r2*h, the volume is about 1235 cubic inches or 20,722 cubic centimeters. Using a bathroom scale, we got its weight to be about 130 lbs, or 59 kg (both +/- 1 or 2). It is possible that the scale got confused, since it expects two feet to be placed on it, rather than one large disk of glass.
However, if our measurements are correct, its density is about 2.91 grams per cc, or 1.68 ounces per cubic inches. (We figured that the density might be as low as 2.80 or as high as 3.00 if the scale was a bit off.)
It turns out that there are lots of different types of glass in that range.
Looking through the Schott catalog I saw the following types of glass with densities in that range, but I may have missed a few.
2.86 N-SF5
2.86 M-BAK2
2.89 N-BAF4
2.90 N-SF8
2.90 P-SF8
2.91 N-PSK3
2.92 N-SF15
2.93 P-SF69
2.94 LLF1
2.97 P-SK58A
3.00 N-KZFS5
3.01 P-SK57Q1
By comparison, some of the commonest and cheapest optical glasses are BAK-4 with density 3.05 and BK-7 with density 2.5.
Someone suggested that the glass might contain radioactive thorium. I don’t have a working Geiger counter, but used an iPhone app called GammaPix and it reported no gamma-ray radioactivity at all, and I also found that none of the glasses listed above (as manufactured today by Schott) contain any Uranium, Thorium or Lanthanum (which is used to replace thorium).
So I then rigged up a fixed laser pointer to measure its index of refraction usingSnell’s Law, which says
Here is a schematic of my setup:
The fixed angle a I found to be between 50 and 51 degrees by putting my rig on a large mirror and measuring the angle of reflection with a carpentry tool.
And here is what it looked like in practice:
I slid the jig back and forth until I could make it so that the refracted laser beam just barely hit the bottom edge of the glass blank.
I marked where the laser is impinging upon the glass, and I measured the distance d from that spot to the top edge of the glass.
I divided d by the thickness of the glass, in the same units, and found the arc-tangent of that ratio; that is the measure, b, of the angle of refraction.
One generally uses 1.00 for the index of refraction of air (n1). I am calling n2 the index of refraction of the glass. I had never actually done this experiment before; I had only read about doing it.
As you might expect, with such a crude setup, I got a range of answers for the thickness of the glass, and for the distance d. Even angle a was uncertain: somewhere around 49 or 50 degrees. For the angle of refraction, I got answers somewhere between 25.7 and 26.5 degrees.
All of this gave me an index of refraction for this class as being between 1.723 and 1.760.
This gave me a list of quite a few different glasses in several catalogs (two from Schott and one from Bausch & Lomb).
Unfortunately, there is no glass with a density between 2.80 and 3.00 g/cc that has an index of refraction in that range.
None.
So, either we have a disk of unobtanium, or else we did some measurements incorrectly.
I’m guessing it’s not unobtanium.
I’m also guessing the error is probably in our weighing procedure. The bathroom scale we used is not very accurate and probably got confused because the glass doesn’t have two feet.
A suggestion was made that this might be what Bausch and Lomb called Barium Flint, but that has an index of refraction that’s too low, only 1.605.
The Hopewell Observatory had available a finely-machined antique, brass-tube 6″ f./14 achromatic refractor.
The mount and drive were apparently made by John Brashear, but we don’t know for sure who made the tube, lens, focuser or optics.
We removed a lot of accumulated green or black grunge on the outside of the tube, but found no identifying markings of any sort anywhere, except for the degrees and such on the setting circles and some very subtle marks on the sides of the lens elements indicating the proper alignment.
The son of the original owner told me that the scope and mount were built a bit over a century ago for the American professional astronomer Carl Kiess. The latter worked mostly on stellar and solar spectra for the National Bureau of Standards, was for many years on the faculty of Georgetown University, and passed away in 1967. A few decades later, his son later donated this scope and mount to National Capital Astronomers (of DC), who were unable to use it. NCA then later sold it to us (Hopewell Observatory), who cleaned and tested it.
The attribution of the mount to Brashear was by Bart Fried of the Antique Telescope Society, who said that quite often Brashear didn’t initial or stamp his products. Looking at known examples of Brashear’s mounts, I think Fried is probably correct. Kiess’s son said he thought that the optics were made by an optician in California, but he didn’t remember any other details. His father got his PhD at UC Berkeley in 1913, and later worked at the Lick Observatory before settling in the DC area. The company that Brashear became doesn’t have any records going back that far.
When we first looked through the scope, we thought the views were terrible, which surprised us. However, as we were cleaning the lens cell, someone noticed subtle pencil marks on the edges of the two lens elements, indicating how they were supposed to be aligned with each other. Once we fixed that, and replaced the 8 or so paper tabs with three blue tape tabs, we found it produced very nice views indeed!
The focuser accepts standard 1.25″ eyepieces, and the focuser slides very smoothly (once we got the nasty, flaky corrosion off as delicately as possible and sprayed the metal with several coats of clear polyurethane). The workmanship is beautiful!
Top: tiller for hand control of right ascension. Middle: counterweight bar (machined by me to screw into the mount) with clamps to hold weights in place. Bottom: detail of 1.25″ rack-and-pinion focuser.
We have not cleaned the mechanical mount, or tried it out, but it does appear to operate: the user turns a miniature boat tiller at the end of a long lever to keep up with the motions of the stars.
The mount and cradle (with size 12 feet for scale)
The counterweight rod was missing, so I machined a replacement, which has weight holder clamps like you see in gymnasiums. Normal Barbell-type weights with 1 inch holes fit well and can be adjusted with the clamps.
Unfortunately, the whole device is rather heavy, and we already own a nice 6″ f/15 refractor made by Jaegers, as well as some Schmidt-Cassegrain telescopes that also have long focal lengths. Putting this scope on its own pedestal, outside our roll-off roof, with adequate protection from both the elements and from vandals, or figuring out a way to mount it and remove it when needed, are efforts that we don’t see as being wise for us.
Did I mention that it’s heavy? The OTA and the mount together weigh roughly 100 pounds.
However, it’s really a beautiful, historic piece with great optics. Perhaps a collector might be interested in putting this in a dome atop their home or in their office? Or perhaps someone might be interested in trading this towards a nice Ritchey Chretien or Corrected Dal-Kirkham telescope of moderate aperture?
Anybody know what might be a fair price for this?
Guy Brandenburg
President
The Hopewell Observatory
Some more photos of the process and to three previous posts on this telescope.
Partway through cleaning the greenish, peeling, grimy layer and old duct tape residue with a fine wire brush at low speed to reveal the beautiful brass OTA.This shows the universal joint that attaches to the ’tiller’ and drives the RA axisDo you see the secret mark, not aligned with anything?Aluminum lens cover and cell before cleaningLens cell and cover, with adjustment screws highlighted, after cleaningIt works!
Hopewell Observatory has three WW2 or Cold-War aerial spy camera optical tube assemblies, including a relatively famous Fairchild K-38. No film holders, though. And no spy planes. The lenses are in good condition, and the shutters seem to work fine.
We would like to give them away to someone who wants and appreciates them, and can put them to good use. Does anybody know someone who would be interested?
They’ve been sitting unused in our clubhouse for over 20 years. Take one, take two, take all of them, we want them gone.
We are located in the DC / Northern Virginia area. Nearby pickup is best. Anybody who wants them shipped elsewhere would obviously need to pay for packaging and shipping.
Here are some photos.
This one is labeled K-38, has a special, delicate, fluorite lens in front, and is stamped with the label 10-10-57 – perhaps a date. The shoe is for scale.
The next two have tape measures and shoes for scale.
Let me know (a comment will work) if you are interested.
We have been concerned with the status of some of the columns that are part of the roll-off-roof of the Hopewell Observatory, so we decided to remove a couple of courses of cinderblock to see what was inside. It turned out to be built much more sturdily than they appeared. and removing those two layers of cinderblock ended up being a much harder job than we expected. We had to build a very strong ‘crib’ to hold the upper part of the 9-foot-tall column in place while we removed the lower foot-and-a-third.
In the video, you see me using a small hand-held air-hammer with chisel to clean up the underside of the upper part of the column, so that the new solid cinderblocks can be mortared into place. The buzzing noise you hear is the air compressor.
We didn’t realize there was rebar (reinforcing iron bars) and concrete poured into most of the ‘cells’ of the 16″ by 24″ columns. Now we do.
How I left it: two solid blocks and some plywood in case our cribbing and jacks give way
You are looking up towards the majority of the column
(In the summer of 1970, between my junior and senior years, I found a job in Brooklyn working on a rodding truck for the local electric power utility, Con Edison — a hard and dirty job that made me itch constantly because of all the fiberglass dust that was scraped off the poles we used to clean out the supposedly empty, masonry, electric conduits that went from one manhole to the next. I guess I pissed off our truck crew’s supervisor, so the very day that I was about to quit to go back to college, I was told that I was being transferred to a jack-hammer crew, where I probably would have gone deaf. This woulda been me, except I quit)
After that was done, I trimmed some of the trees to the west. Constant struggle with the shrubbery!
I found a few things that may have been causing problems:
(1) Whoever put the lens cell together last didn’t pay any attention at all to the little registration marks that the maker had carefully placed on the edges of the lenses, to show how they were supposed to be aligned with each other. I fixed that, as you see in the photo below. The reason this is probably important is that the lenses are probably not completely symmetrical around their central axes, and the maker ‘figured’ (polished away small amounts of glass) them so that if you lined them up the way he planned it, the images would be good; otherwise, they would probably not work well at all and could very well be causing the poor star test images we saw.
2. The previous assembler also put eleven little tape spacers around the edges, between the two pieces of glass. More is apparently not better; experts say you should have three spacers, each 120 degrees apart from the other two. Done.
3. The bottom (or ‘flint’) element is slightly smaller than the other one (the ‘crown’), so it probably shifted sideways. That alone would be enough to mess up the star tests in the way that we saw. So I wrapped two thicknesses of blue painter’s tape around the outside of the flint, and put some three cardboard shims between the edges of the ‘crown’ and the aluminum cell.
4. There were no shims at all between the flint and the aluminum ring that holds it in place underneath. This caused some small scratches on the glass, and might have been warping the glass. I put in three small shims of the same type of blue painter’s tape, lined up with the other spacers.
We will see if these improvements help. I really don’t want to haul this all the way out to Hopewell Observatory and struggle with putting it back on the mount for a star test. That was just way too much work, much more than I expected! The next test will be with an optical flat placed in front of the lenses, and a Ronchi grating.
I would like to thank Bart Fried, Dave Groski, and several other people on the Antique Telescope Society website for their advice.
————————————-
By the way, these photos show how we held the refractor on the mounting plate for the Ealing mount at Hopewell Observatory.
EDIT: It has now been sold to an ambitious telescope maker in Italy.
We had a 12-inch Casssegrain optical telescope assembly for sale at an extremely attractive price: just two hundred dollars (or any reasonable offer). You pay for shipping.
The full-thickness primary mirror alone is worth much more than that as a raw piece of unfinished Pyrex! (United Lens charges $450 for an equivalent, 12.5″ diameter, roughly 2″ thick, raw, unfigured, disk of Borofloat!)
The telescope was part of a package (mount-cum-telescope) that was purchased from the Ealing company back in the 1960s by the University of Maryland. The scope itself never gave satisfactory images, so the UMd observatory sold it off in the early 1990s, and it ended up at the Hopewell Observatory about a decade before I became a member. Hopewell kept the mount, which still works quite well, but removed the telescope and replaced it with a 14-inch Celestron Schmidt-Cassegrain.
I recently examined the telescope itself (the one we are selling) and found that it indeed has a hyperbolic primary with a focal length of about 4 feet (so it’s f/4). Presumably, the convex secondary is also a matching hyperboloid, to create a Ritchey-Chretien design, but I don’t feel like perforating a large spherical mirror to create a Hindle sphere to test it properly. In any case, using a 12-inch flat, I was unable to produce decent Ronchi images.
As you may know, figuring and collimating a Richey-Chretien require a LOT of patience, more than I have. My suggestion would be to refigure the primary into a paraboloid, procure a standard flat, elliptical diagonal, and repurpose this as a Newtonian. Refiguring this mirror a task that I don’t feel like taking on, since our observatory already has a 14″ Newtonian, a 14″ SCT, and I already have built a 12.5″ Newtonian of my own. Plus, I am finding that figuring a 16.5″ thin mirror is plenty of work already.
So, our loss could be your gain! Make an offer!
I attach a bunch of photos of the OTA from several viewpoints, including a ronchigram. The mirror has been cleaned off since these picture were made; the little electronic motor was for remote focusing of the secondary.
Last week, I was helping staff and students at the University of Maryland’s Observatory to clean out a storage trailer.
We noticed a seven-foot-long, 6-inch diameter telescope that had been sitting in a corner there, unused, ever since it was donated to the National Capital Astronomers (NCA) club nearly ten years earlier by the son of the original owner, Carl Kiess, who had worked at the Lick Observatory in California and the National Bureau of Standards in or near DC, but who had passed away nearly fifty years earlier. I figured I could put it on a motorized telescope mount at Hopewell Observatory and at a minimum test the optics to see if they were any good. The current officers and trustees of NCA all said they thought this was a good idea.
One thing that caught my eye was how filthy and flaky the coating was on the tube itself, although the lens appeared to be in good shape.
The drive, while impressive, does not have a motor, requires a pier, and is extremely heavy. I decided not to mess with the drive and to put it temporarily on our existing, venerable, sturdy, motorized, electronic drive we have at Hopewell Observatory.
So I experimented with various abrasives and solvents to clean off the nasty green coating; a fine wire wheel inserted in an electric drill did the best job. Here it is partly cleaned off:
I then used Brasso for a final polish, followed by a final cleaning with acetone, and then applied several coats of polyurethane to keep it looking shiny for a number of years. (The lenses stayed covered for all of this!) So this is how it looks now:
The next task is to make a temporary holder and then put it on the mount, and then test the optics.
I have been wrestling with this mirror for YEARS. It’s not been easy at all. The blank is only about twice the diameter of an 8″ mirror, but the project is easily 10 times as hard as doing an 8-incher. (Yes, it’s the one in the photo heading this blog!)
Recently I’ve been trying to figure it using a polishing/grinding machine fabricated by the late Bob Bolster (who modeled his after the machine that George Ritchey invented for the celebrated 60″ mirror at Mount Wilson over a century ago). That’s been a learning exercise, as I had to learn by trial and error what the machine can and cannot do, and what strokes produce what effects. The texts and videos I have seen on figuring such a large mirror with a machine have not really been very helpful, so it’s mostly been trial and error.
My best results right now seem to come from using an 8″ pitch tool on a metal backing, with a 15 pound lead weight, employing long, somewhat-oval strokes approximately tangential to the 50% zone. The edge of the tool goes about 5 cm over the edge of the blank.
This little movie shows the best ronchigrams I have ever produced with this mirror, after nearly 6 hours of near-continuous work and testing. Take a look:
And compare that to how it used to look back in September:
Also compare that to the theoretically perfect computed ronchigrams from Mel Bartels’ website:
Part of the reason this mirror has taken so long is that after grinding and polishing by hand some years ago, I finally did a proper check for strain, and discovered that it had some pretty serious strain. I ended up shipping it out to someone in Taos, New Mexico who annealed it – but that changed the figure of the mirror so much that I had to go back to fine grinding (all the way back to 120 or 220 grit, I think), and then re-polishing, all by hand. I tried to do all of that, and figuring of the mirror, at one of the Delmarva Mirror Making Marathons. It was just too much for my back — along with digging drainage ditches at Hopewell Observatory, I ended up in a serious amount of pain and required serious physical therapy (but fortunately, no crutches), so this project went back into storage for a long, long time.
Recently I’ve tried more work by hand and by machine. Unfortunately, when I do work by hand, it seems that almost no matter how carefully I polish, I cause astigmatism (which I am defining as the mirror simply not being a figure of rotation) which I can see at the testing stand as Ronchi lines that are not symmetrical around a horizontal line of reflection. (If a Ronchi grating produces lines that look a bit line the capital letters N, S, o Z, you have astigmatism quite badly. If astigmatism is there, those dreaded curves show up best when your grating is very close to the center of curvature (or center of confusion) of the central zone.
Using this machine means controlling or guessing at a LOT of variables:
length of the first crank;
length (positive or negative) of the second crank;
position of the slide;
diameter of the pitch lap;
composition of the pitch;
shape into which the pitch lap has been carved;
amount of time that the lap was pressed against the lap;
whether that was a hot press or a warm press or a cold press;
amount of weight pushing down on the lap;
type of polishing agent being used;
thickness or dilution of polishing agent;
temperature and humidity of the room;
whether the settings are all kept the same or are allowed to blend into one another (eg by moving the slide);
time spent on any one setup with the previous eleven or more variables;